机器人有哪些作业方式?工业机器人运动控制有哪几种插补方式?

机器人有哪些作业方式?



1、机器人有哪些作业方式?

机器人还可以用于抛光、钻孔、仿形铣、上螺母和拧螺丝。钻孔和仿形铣两种作业,如不 要求极高的精度,可采用点位或连续轨迹的预编程序。但是,在钻孔定位要求严格处需使用样板。这种加工的难点是,除非机器人的腕部有柔性,否则,无论是部件还是机器 人本身说引起的任何1点不对准,都会损坏样板或使钻孔定位不准。利用柔性腕,这个问题已经解决,它能使钻头对准样板钻孔。   1.5 0部件装卸和传送   将0部件或物体从某1位置移到工作区的另1位置,是机器人的最常见的用途之1。通常包括“码放”和“卸货”两种作业形式。其它重要的0部件装卸用途 ,都涉及拾取半成品或未完工的0部件,并将其送至机床作最后加工,这种作业对人类不安全,而对机器人则可以轻松完成。   在金属加工中,1种常见的任务是热 压加工。因为要求在加热的炉窑、冲压床、车床或手摇钻床附近工作,这样的工作有危险。而机器人能耐高温环境,程序编好了就可以防止与其它加工工具碰撞。   1.6 组装作业   人可以利用眼手的良好协调动作,再加上触觉,将1组不同的0部件组装起来制成成品或组件,但组装工作令人刚来到乏味且劳动力成品很 高,所以组装作业是机器人的1项诱人的用途。在大部分此类工作中,要将所要加工的点和操作顺序示教给机器人,通常使用的唯1的外部传感信息是0件或组件是否在工作 单元室内的特定位置。   1.7 检验0件   机器人已用于检验完工的0件或组件质量。汽车工业是以检验自动化来提高产品质量的典范。轿车车身各 个部位的尺寸精度,用含有许多可动探头的特殊检测工具来检验。每个探头移动的距离与预定值加以比较,从而确定是否正品。这个系统不仅可以提出超差的部件,还可以及 时指出潜在的问题。视觉系统已用于这种检验,但价格较高,使用尚不普遍。

工业机器人运动控制有哪几种插补方式?



2、工业机器人运动控制有哪几种插补方式?

工业机器人运动控制有哪几种查补方式工业机器人运动,好多插补方式呢,具体的使用的地方不1样,咋补也不1样的。

工业机器人的虚拟电机有哪些控制方式?



3、工业机器人的虚拟电机有哪些控制方式?

点位控制方式(ptp):这种控制方式的特点是只控制工业机器人末端操作器在作业空间中某些规定的离散点上的位姿。控制时只要求工业机器人快速、准确地实现相邻各点之间的运动,而对达到目标点的运动轨迹则不作任何规定,这种控制方式的主要技术指标是定位精度和运动所需的时间。工业机器人的控制方式都有哪些由于其控制方式的易于实现、定位精度要求不高的特点,因而常被应用在上下料、搬运、电焊何在电路板上安插元件等只要求目标点处保持末端操作器位姿准确的作业中,1般来说,这种方式比较简单,但是,要达到2υm~3υm的精度是相当困难的。连续轨迹运动方式(cp):这种控制方式的特点是连续地控制工业机器人末端操作器在作业空间中的位姿,要求其严格按照规定的轨迹和速度在1定的精度范围内运动,而且速度可控,轨迹光滑,运动平稳,以完成作业任务,工业机器人各关节连续、同步地进行相应的运动,其末端操作器即可形成连续的轨迹,这种控制方式的主要技术指标是工业机器人末端操作器位姿的轨迹跟踪精度及平稳性。通过弧焊、喷漆、去毛边和检测作业机器人都采用这种控制方式。工业机器人的控制方式都有哪些在完成装配、抓放物体等工作时,除要准确定位之外,还要求使用适度的力或力柜进行工作,这时就要利用力伺服方式。这种方式的控制原理与位置伺服控制原理基本相同,只不过输入量和反馈量不是位置信号。而是力信号,因此系统中必须有力传感器,有时也利用接近、滑动等传感功能进行自适应式控制。机器人的智能控制时通过传感器获得周围环境的知识,并根据自身内部的知识库作出相应的决策,采用智能控制技术,是机器人具有较强的环境适应性及自学习能力,智能控制技术的发展有赖于近年来人工神经网络、基因算法、遗传算法、专家系统等人工智能的迅速发展。

机器人关节的驱动方式有哪3种?



4、机器人关节的驱动方式有哪3种?

当前,市场上的机器人主要使用3种驱动方法,即液压驱动,气动驱动和电动机驱动。这3种驱动方法中的每1种都有自己的特征: 电动机驱动是利用各种电动机产生的力或转矩直接驱动机器人的关节,或者通过诸如减速的机构来驱动机器人的关节,以获得所需的位置,速度,加速度和其他指标。具有环保,整洁,控制方便,运动精度高,维护成本低,驱动效率高的优点。电机有4种类型:步进电机,直流伺服电机,交流伺服电机和线性电机。 液压驱动器使用液体作为介质来传递力,并使用液压泵使液压系统产生的压力驱动执行器运动。 液压驱动模式是成熟的驱动模式。它具有易于控制的压力和流量,高刚性,不可压缩的液压油,简单稳定的调速,方便的操作和控制以及广泛的无级调速(调速范围高达2000:1),并且具有以下优点:较小的驱动力或扭矩可获得更大的动力。然而,由于流体流动阻力,温度变化,杂质,泄漏等的影响,工件的稳定性和定位精度不准确,并且还造成环境污染并增加了维护技术要求。因此,它经常用于需要较大输出力和低运动速度的场合。在电驱动技术成熟之前,液压驱动是最广泛使用的驱动方法。 气动驱动器使用空气作为工作介质,并使用气源发生器将压缩空气的压力能转换为机械能,以驱动执行器以完成预定的运动定律。气动驱动具有节能简单,时间短,动作快,柔软,重量轻,产量/质量比高,安装维护方便,安全,成本低,对环境无污染的优点。然而,由于空气的可压缩性,要实现高精度,快速响应的位置和速度控制并不容易,而且还会降低驱动系统的刚性。

自动扫地机器人的定位方式有哪几种?



5、自动扫地机器人的定位方式有哪几种?

扫地机器人,又称自动打扫机、智能吸尘、机器人吸尘器等,是智能家用电器的1种,能凭借1定的人工智能,自动在房间内完成地板清理工作。1般采用刷扫和真空方式,将地面杂物先吸纳进入自身的垃圾收纳盒,从而完成地面清理的功能。但是你了解它是如何移动,进行清扫的吗?今天就和大家说说扫地机器人的定位方法。  定位是包括扫地机器人在内的移动机器人自主导航中最基本的环节,也是完成任务必须解决的问题。说到定位,大家首先想到的可能是GPS定位、基站定位等常用的室外定位。与之不同,扫地机器人的定位都是室内定位,其要求定位精度高(最少在亚米级),实时性好,GPS、基站定位等方法无法满足。扫地机器人定位总体上可以分为相对定位和绝对定位,下面我们分别来看。  相对定位法  航位推算法(Dead-ReckoningMethod)是1种经典的相对定位法,也是扫地机器人目前最为广泛使用的1种定位方法。它利用机器人装备的各种传感器获取机器人的运动动态信息,通过递推累计公式获得机器人相对初试状态的估计位置。航位推算较常使用的传感器1般有:码盘,惯性传感器(如陀螺仪、加速度计)等。  码盘法1般使用安装在车轮上的光电码盘记录车轮的转数,进而获得机器人相对于上1采样时刻位置和姿态的改变量,通过这些位移量的累积就可以估计机器人的位置。码盘法优点是方法简单、价格低廉,但其容易受标定误差、车轮打滑、颠簸等因素影响,误差较大。但是由于码盘价格便宜,简单易用,可用于机器人较短时间距离内的位置估计。  惯性传感器使用陀螺仪和加速度计得到机器人的角加速度和线加速度信息,通过积分获得机器人的位置信息。1般情况下,使用惯性传感器的定位精度高于码盘,但是其精度也要受陀螺仪漂移、标定误差、敏感度等问题影响。无论是使用码盘还是惯性传感器,它们都存在1个共同的缺点:有累积误差,随着行驶时间、距离的不断增加,误差也不断增大。因此相对定位法不适合于长时间、长距离的精确定位。  |绝对定位法  绝对定位法是指机器人通过获得外界1些位置等己知的参照信息,通过计算自己与参照信息之间的相互关系,进而解算出自己的位置。绝对定位主要采用基于信标的定位、环境地图模型匹配定位、视觉定位等方法。  a基于信标的定位  信标定位原指在航海或航空中利用无线电基站发出的无线电波实现定位与导航的技术。对机器人室内定位而言是指,机器人通过各种传感器接收或观测环境中已知位置的信标,经过计算得出机器人与信标的相对位置,再代入已知的信标位置坐标,解出机器人的绝对坐标来实现定位。用于定位的信标需满足3个条件:  (1)信标的位置固定且信标的绝对坐标已知;  (2)信标具有主被动特征,易于辨识;  (3)信标位置便于从各方向观测。  信标定位方式主要有3边测量和3角测量。3边测量是根据测量得到的机器人与信标的距离来确定移动机器人位置的方法。3边测量定位系统至少需要3个已知位置的发射器(或接收器),而接收器(或发射器)安装在移动机器人上。3角测量和3边测量的思路大体1致,通过测量移动机器人与信标之间的角度来进行定位。  基于信标的定位系统依赖于1系列环境中已知特征的信标,并需要在移动机器人上安装传感器对信标进行观测。用于信标观测的传感器有很多种,比如超声波传感器、激光雷达、视觉传感器等。可以实时测量,没有累进误差,精度相对较高、稳定性好,提供快速、稳定、精确的绝对位置信息,但安装和维护信标花费很高。市场上已经出现较为成熟的基于信标定位的信标定位扫地机器人,如Proscenic的模拟GPS卫星3点定位技术,iRobot的Northstar导航定位技术,但由于其价格较为昂贵,它们都用于相对高端的产品中。  b环境地图模型匹配定位  是机器人通过自身的各种传感器探测周围环境,利用感知到的局部环境信息进行局部的地图构造,并与其内部事先存储的完整地图进行匹配。通过匹配关系获得自己在全局环境中的位置,从而确定自身的位置。该方法由于有严格的条件限制,只适于1些结构相对简单的环境。  c基于视觉的定位  科学研究统计表明,人类从外界获得信息量约有75%来自视觉,视觉系统是机器人与人类感知环境最接近的探测方式。基于视觉的定位主要分为单目视觉、双目视觉。  单目视觉无法直接得到目标的3维信息,只能通过移动获得环境中特征点的深度信息,适用于工作任务比较简单且深度信息要求不高的情况,如果利用目标物体的几何形状模型,在目标上取3个以上的特征点也能够获取目标的位置等信息,但定位精度不高。  双目立体视觉3维测量是基于视差原理的,即左相机像面上的任意1点只要能在右相机像面,上找到对应的匹配点,就可以确定出该点的3维信息,从而获取其对应点的3维坐标。目前,基于视觉定位的扫地机器人也已有产品推出,iRobot和Dyson分别于2015年及2014年推出了基于视觉定位的高端扫地机器人RoomBa980和360Eye。  定位是扫地机器人自主路径规划的基础。经过多年的研究,虽然受成本、生产等因素的制约,航位推算法仍然是目前采用最广泛的定位方法,但通过算法优化,利用混合定位,可以减小其误差带来的影响。而且,随着视觉定位等较高定位精度的定位方法的进1步成熟,其成本也将逐步下降,并将从高端市场逐渐推向大众市场,到时候扫地机器人的定位精度,智能化水平都将有普遍的提升。想选择合适的扫地机器人给你推荐中国机器人信息网,上面会有你想要的。

说说移动机器人有哪几种驱动方式



6、说说移动机器人有哪几种驱动方式

1般有电动驱动,液压驱动、气压驱动等方式。小微型机器人1是电动驱动。工业用机器人1般是电控液压驱动或电控气压驱动。液压驱动系统:由于液压技术是1种比较成熟的技术。它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适于在承载能力大,惯量大以及在防焊环境中工作的这些机器人中应用。但液压系统需进行能量转换(电能转 换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低。液压系统的液体泄泥会对环境产生污染,工作噪声也较高。因这些弱点,近年来,在负荷为100kz以下的机器人中往往被电动系统所取代。气动驱动系统:具有速度快、系统结构简单,维修方便、价格低等特点。适于在中、小负荷的机器人中采用。但因难于实现伺服控制,多用于程序控制的机械人中,如在上、下料和冲压机器人中应用较多。电动驱动系统:由于低惯量,大转矩交、直流伺服电机及其配套的伺服驱动器(交流变频器、直流脉冲宽度调制器)的广泛采用,这类驱动系统在机器人中被大量选用。这类系统不需能量转换,使用方便,控制灵活。大多数电机后面需安装精密的传动机构。直流有刷电机不能直接用于要求防爆的环境中,成本也较上两种驱动系统的高。但因这类驱动系统优点比较突出,因此在机器人中被广泛的选用。

相似内容
更多>